TY - JOUR
T1 - Improving automated thyroid cancer classification of frozen sections by the aid of virtual image translation and stain normalization
AU - Gadermayr, Michael
AU - Tschuchnig, Maximilian
AU - Stangassinger, Lea Maria
AU - Kreutzer, Christina
AU - Couillard-Després, Sébastien
AU - Oostingh, Gertie Janneke
AU - Hittmair, Anton
N1 - Kreutzer, C-D: Spinal Cord Injury and Tissue Regeneration Center Salzburg, Research Institute of Experimental Neuroregeneration, Austria
PY - 2023
Y1 - 2023
N2 - Frozen sections are rapidly generated during surgical interventions. This allows surgeons to wait for histological findings during the interventions in order to base intra-surgical decisions on the outcome of the histology. However, compared to paraffin sections the quality of frozen sections is often strongly reduced, leading to a lower diagnostic accuracy. Deep learning-based image translation technology facilitates a virtual conversion between different native imaging technologies with the potential of translating a frozen section into a virtual paraffin section. Stain normalization can be applied to adjust further unequal image characteristics. We investigated the effect of deep learning-based image translation, conventional image normalization and a combination of these techniques on computer aided decision support systems for thyroid cancer diagnostics. For classification, a bag-of-words approach, based on convolutional neural network features, k-means clustering and a support vector machine were employed. While stain normalization led to a decreased overall classification accuracy (0.703 vs 0.727), image translation led to an increased mean score (0.770). A combination of both, image translation and normalization increased the accuracy even further (0.844) and clearly reduced the gap to the post-operative paraffin sections (0.902). Deep learning-based image translation proved to be a powerful tool to enhance accuracy of computer aided diagnosis which clearly outperformed conventional stain translation. This work provides a strong motivation for performing a study with expert pathologists performing the categorization of frozen sections and the corresponding improved sections, to investigate whether a similar effect is achieved in a clinical setting.
AB - Frozen sections are rapidly generated during surgical interventions. This allows surgeons to wait for histological findings during the interventions in order to base intra-surgical decisions on the outcome of the histology. However, compared to paraffin sections the quality of frozen sections is often strongly reduced, leading to a lower diagnostic accuracy. Deep learning-based image translation technology facilitates a virtual conversion between different native imaging technologies with the potential of translating a frozen section into a virtual paraffin section. Stain normalization can be applied to adjust further unequal image characteristics. We investigated the effect of deep learning-based image translation, conventional image normalization and a combination of these techniques on computer aided decision support systems for thyroid cancer diagnostics. For classification, a bag-of-words approach, based on convolutional neural network features, k-means clustering and a support vector machine were employed. While stain normalization led to a decreased overall classification accuracy (0.703 vs 0.727), image translation led to an increased mean score (0.770). A combination of both, image translation and normalization increased the accuracy even further (0.844) and clearly reduced the gap to the post-operative paraffin sections (0.902). Deep learning-based image translation proved to be a powerful tool to enhance accuracy of computer aided diagnosis which clearly outperformed conventional stain translation. This work provides a strong motivation for performing a study with expert pathologists performing the categorization of frozen sections and the corresponding improved sections, to investigate whether a similar effect is achieved in a clinical setting.
U2 - 10.1016/j.cmpbup.2023.100092
DO - 10.1016/j.cmpbup.2023.100092
M3 - Original Article (Journal)
SN - 2666-9900
JO - Computer Methods and Programs in Biomedicine Update
JF - Computer Methods and Programs in Biomedicine Update
ER -